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When You Multiply . When You Multiply .
Symbol KNow By To Find Symbol | Symbol Know By To Find Symbol
LENGTH LENGTH
in inches 25.4 millimeters mm mm  millimeters 0.039 inches in
ft feet 0.305 meters m m meters 3.28 feet ft
yd yards 0.914 meters m m meters 1.09 yards yd
mi miles 1.61 kilometers km km  kilometers 0.621 miles mi
AREA AREA
in?  square inches 645.2 millimeters mm? | mmz Millimeters 0.0016  square inches in?
squared squared
ft®  square feet 0.093 meters squared ~ m’ m?  meterssquared  10.764  square feet ft?
yd>  square yards 0.836 meters squared ~ m? m?  meterssquared  1.196  square yards yd?
ac acres 0.405 hectares ha ha hectares 2.47 acres ac
mi>  square miles 2.59 Kilometers km? km?  Kilometers 0.386  square miles mi?
squared squared
VOLUME VOLUME
floz fluid ounces 29.57 milliliters ml ml milliliters 0.034 fluid ounces fl oz
gal  gallons 3.785 liters L L liters 0.264 gallons gal
ft*  cubic feet 0.028 meters cubed m?® m®  meters cubed 35.315  cubic feet ft*
yd®>  cubic yards 0.765 meters cubed m® m®  meters cubed 1.308  cubic yards yd?
NOTE: Volumes greater than 1000 L shall be shown in m®.
MASS MASS
0z ounces 28.35 grams g g grams 0.035 ounces 0z
Ib pounds 0.454 kilograms kg kg kilograms 2.205 pounds Ib
T f’g)o rt tons (2000 0.907 megagrams Mg Mg  megagrams 1.102 shorttons (20001b) T
TEMPERATURE (exact) TEMPERATURE (exact)
. . (F- . o o . 1.8C+3 . o
F Fahrenheit 32)/1.8 Celsius C C Celsius 5 Fahrenheit F

*Sl is the symbol for the International System of Measurement
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1.0 INTRODUCTION

The expansion of the interstate highway system in the 1950s produced large numbers of short
and medium span bridges with reinforced concrete deck girders (RCDG). At the same time, the
advent of standardized deformed steel reinforcing bars with ASTM A-50 (ASTM 1950) enabled
changes to American Concrete Institute (ACI) and American Association of State Highway
Officials (AASHO) design specifications that dramatically changed detailing practice for flexural
steel terminations. Flexural reinforcing bar terminations were permitted where steel was no
longer required by calculation. The new standardized reinforcing bars were thought to provide
sufficient anchorage without the need for bends or hooks. Thus the design practice employed
straight-bar terminations in flexural tension regions whereas previously bends and hooks would
be required. In addition, the design provisions of the time allowed higher shear stresses in the
concrete than what would be permissible in modern standards, resulting in insufficient transverse
reinforcing steel in the present day. Lastly, the design provisions did not recognize the
additional demands in the flexural reinforcing steel from the combination of shear and flexure.

Heavier trucks and higher traffic volume on roadways today have greatly increased the service
loading on these bridges. Many of these bridges exhibit diagonal cracking due to combinations
of shrinkage and thermal strains, live loading, and poor detailing practices. Diagonal cracks are
commonly found at locations along the span where flexural reinforcing steel terminates and are a
source of concern for owners and bridge engineers. Diagonal cracking near the termination of
flexural bars increase the tensile demand in the developing reinforcing steel bars. If the
anchorages of the cutoff bars fail, the remaining reinforcing steel bars may not be sufficient to
carry the applied loads and the member could fail.

Current load ratings of these older RCDG bridges can be controlled by the flexural anchorage
deficiencies along the girders. Some RCDG bridges could have posted load limits that are
controlled by the poorly detailed flexural anchorages. The ratings can be significantly reduced
when the influence of shear is considered, as required by the AASHTO MBE (AASHTO MBE
2011). To eliminate the need and costs required to post or replace deficient bridges,
strengthening methods are necessary.

Over the last ten years, Oregon State University has conducted a large number of experimental
tests on full-scale vintage RCDG bridge girder details (Higgins et al. 2004). These realistic
girder specimens were constructed, instrumented, and tested to failure. The specimens were 26 ft
(7.9 m) long beams with a 14 in. by 42 in. (356 mm x 1069 mm) stem and a 36 in. by 6 in. (914
mm x 152 mm) integral deck. Both T and Inverted-T (IT) specimens were tested, focusing on the
positive and negative moment regions, respectively. The design concrete strength, concrete
mixture, and transverse steel used were representative of that used in the 1950’s. Some of the
specimens contained straight bar terminations crossing a preformed diagonal crack in the flexural
tension region combined with shear. Instrumentation focused on stresses along the reinforcement
surrounding the crack and along the development length of the cutoff bars. This past research has



helped to quantify the behavior of poorly detailed flexural anchorages and demonstrated the
member strength can be controlled by the anchorage failure.

The present research reported here was conducted to develop methods to strengthen RCDGs with
deficient flexural anchorages. An innovative strengthening technique was developed using near-
surface mounted (NSM) metallic alloys. Stainless steel and titanium alloy bars were chosen due
to their environmental durability, ductility, high strength, and ability to form mechanical
anchorages at the ends of the bars. For all specimens, the NSM strengthening technique
increased the baseline specimen capacity and demonstrated the ability to prevent or delay
flexural anchorage failures. Supplemental tests of hook ductility and bond strength of the
metallic bars were also conducted. In addition to the full-scale beam specimens, a case study was
conducted to demonstrate the methods for the retrofit of the Mosier Bridge 07626A, which is an
overcrossing of 184 in Oregon.

The research and case study determined that stainless steel and titanium are viable materials for
strengthening flexurally deficient RCDGs. Titanium offered higher strength, and greater control
of the material properties which allows more optimized design. Based on this research, bridge
designers should be able to economically and effectively improve vintage RCDG bridge load
ratings that are controlled by deficient flexural anchorages by deploying these retrofitting
techniques. This NSM retrofitting technique with metallics could ultimately help to maintain and
improve the operational safety and mobility of the transportation system.

This report is organized into two (2) parts. The main report contains the experimental and
analytical results from prismatic T and IT specimens and the complementary investigations of
bond, pull-out, and hook ductility. A full archive of the data from these studies is reported in
Appendices A, B and C. Part Il, is reported in Appendix D. This contains the experimental and
analytical results on bridge girders representative of Mosier Bridge #07626A.



2.0 BACKGROUND

This chapter surveys the archival literature on anchorage and bond for steel reinforcing and fiber
reinforced polymer (FRP) bars. First, a generalized bond stress equation was derived. Then, a
review of the literature was performed that summarized the literature describing the behavior of
steel reinforcing bars in concrete. Next, a review of NSM bars in epoxy has been summarized.
Lastly, changes in design specifications are explained with correlations to the literature.

2.1 ANCHORAGE OF REINFORCING BARS

Adequate anchorage is essential to obtain the full strength of a reinforcing steel bar embedded in
concrete. Bridge designers prior to the 1950s commonly detailed hooked bar terminations to
ensure adequate anchorage on proprietary reinforcing steel bars. This practice ceased after
experimental testing on standardized deformations on reinforcing bars indicated a greatly
improved bond strength. However, designers and scholars have since found that straight bar
terminations in the flexural tension zone can result in cracking and premature loss of anchorage.
Evidence of these early terminations can be seen from web cracking in vintage RCDG bridges.

Originally, to attain adequate anchorage of reinforcing steel, designers limited bond stress. Bond
stress, , is the stress transferred between the reinforcing bar and the concrete and must account
for the change in tension along the bar as illustrated Figure 2.1.

1= Dbond stress
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Figure 2.1: Bond stress in bar.

Bond stress is a function of the surface area and the length of bar embedded. Actual bond stress
is variable over the length of the bar so y, is typically specified as zvg. The bond stress of a bar is
computed as:

Afd
Havg = 4_SL d (2.1)

where Afs is the change in stress over the segment, dy is the nominal bar diameter, and L is the
embedded length.



To design for bond stress in a full-scale beam, early literature depended on basic beam

mechanics. The average bond stress in the flexural steel is found by dividing the applied shear by
the area of steel multiplied by the lever arm as:

14
Havg = 370 (2.2)

where V is the applied shear, jd is the effective distance from the centroids of the compression
and tension zones, and 2o is the perimeter of the bar. This approach is reflected in early design
specifications when detailing anchorages.

More modern research has found there are additional factors that exacerbate anchorage demands
in flexural tension zones. The presence of a diagonal crack in a section with shear and flexure
can place additional demands on the tension steel, as illustrated in Figure 2.2.
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Figure 2.2: Internal forces at a diagonally cracked section (AASHTO LRFD 2007).

If summed about Point 0, the tensile demand, T, is expressed as:

M, 2007 AASHTO
T = N +0.5N, + (V,, — 0.5V, — V) = cot® Eq 58351 (2.3)

where M, is the factored moment demand taken where the crack crosses the flexural steel, d, is
the distance from the center of the compression block to the centroid of steel, Ny is the applied
factored axial force, V, is the applied factored shear demand, Vs is the shear resistance provided
by the transverse reinforcement, V, is the shear carried by the prestressing strands, and 4 is the
crack angle. For conventionally reinforced beams, Ny and V,, are not applicable. If a diagonal
crack propagates in the region where the reinforcing steel bar is not fully developed, the
additional demands could produce an anchorage failure.

Anchorage failures fall into two categories: slipping and splitting failures. Slipping anchorage
failures usually occur if there is transverse reinforcement present to confine the flexural
reinforcing steel and prevent concrete splitting. Once the bar initiates slip, the deformations of
the bar engage and crush the concrete locally. The bar slowly slips through the concrete, creating
a ductile response (Triska 2010). Splitting anchorage failure occurs when the reinforcing bar



deformations engage the concrete and create radial stresses. These stresses create cracks and split
the surrounding concrete. This less ductile response commonly happens in the flanges with
negative bending moment, or where there are not sufficient stirrups crossing the splitting plane
(Goodall 2010).

2.2 LITERATURE REVIEW

A literature review was conducted to collect background information on anchorage of reinforcing
bars embedded in concrete and epoxy. Relevant research on reinforced concrete bond and
anchorage is available dating from the early 1950s to the present. However, the majority of near-
surface mounted (NSM) fiber reinforced polymer (FRP) literature was written since 2000.

2.2.1 Steel Reinforcing Bar Bond Stress

Mylrea (Mylrea 1948) summarized the body of knowledge on bond stress and bar anchorage up
to 1948. Generally, the pull-out test was accepted as the most common way to establish bond
properties. Throughout the research, it was concluded that pull-out tests provide higher bond
stresses than were apparent in a full-scale beam. It was established that bond stress is not
uniformly distributed over the bar and increases non-linearly with movement of the bar.
Furthermore, the highest bond stress achieved in beam tests is always the stress prior to the first
slip. After initial concrete crushing or slipping, it is easier to propagate cracks and create more
bar slip. Bond stress from plain bars in pull-out tests ranged from 200-400 psi (1.38-2.76 MPa).

Clark (Clark 1949) investigated the bond stresses in several proprietary bars in reinforced
concrete. The study proposed and tested a larger deformation pattern on reinforcing steel. The
experiment used scaled beam tests with varying embedment length, bar type, and depth. The
beam end specimens were 8 x 8 x 78 in. (0.2 x 0.2 x 1.98 m) concrete prisms with various
reinforcement lengths and depths. The beam specimens had a loading point directly over the
termination of the bar cutoff. The specimens failed by bond slippage if the bar had a short
embedment length, or by diagonal tension and bond failure with a longer embedment length. In
general, the loaded end bars experienced larger slips at lower bond stresses; while the free ends
experienced high bond stresses before any significant slipping. Clark reported a mean average
bond stress of 300-400 psi (2.07-2.76 MPa) for #7 (22M) bars in the beam end test after slipping.
The results confirmed that more deformed reinforcing bars created a stronger bond. Furthermore,
the specimens with the newly proposed deformation pattern achieved the greatest bond stress,
thus contributing to the adoption of ASTM A305-47T into ACI 318.

Mains (Mains 1951) measured the distribution of bond stresses along reinforcing bars using a
method that would not affect bond between bars and concrete. The reinforcing bars of interest
were cut at two sections and had strain gages placed inside a groove cut into the bar near the
neutral axis. Several beam and pull-out specimens were tested with plain and deformed bars.
Previous code requirements assumed even distribution of bond stress over the bar. Mains’ new
technique showed that measured bond stress was consistently higher than calculated bond stress.
This demonstrated that the assumption of even bond stress distribution in the previous code
requirements was inaccurate. A straight embedment of deformed bars in pull-out specimens
attained 770 psi (5.31 MPa) at the highest test load. Beam specimens with deformed bar straight
terminations achieved bond stresses ranging from 540-815 psi (3.72-5.62 MPa) at the highest test



loads. All bars in the beam tests failed by fracture rather than bond. Evidence was presented that
cracking in the beam increased the local stresses along the reinforcing bars. When the beam
specimen was subjected to combined shear and moment, the tensile forces in the bars exceeded
the calculated tensile demand.

Ferguson and Breen (Ferguson and Breen 1965) considered lap splice length in a constant
moment region. Tests were conducted on rectangular full scale beams with four bars of flexural
reinforcement and no transverse reinforcement. A lap splice was embedded at length, L, at
midspan under a constant moment region. Ferguson and Breen found that lap splices could be 5-
6 in. (127-152 mm) apart and still be effective. Bond stress decreased as the splice length
increased. The larger #11 (36M) bars had a greater bond stress than the #8 (25M) bars. The #11
(36M) bars had an average bond stress ranging from 350-475 psi (2.41-3.27 MPa) with
increasing splice lengths. Specimens with stirrups increased the average bond stress to 560 psi
(3.86 MPa). Other conclusions were that concrete strength did not significantly affect splitting
failures, steel strains had little influence in bond strength in a splice, and the presence of
transverse steel increased the lap splice strengths.

Orangun et al. (Orangun et al. 1977) reevaluated previous data on development length and
splices. An equation for determining development length was proposed based on a nonlinear
regression of previous beam tests. A bond stress formula was calculated using tangential forces
from the longitudinal bond stress and radial forces from deformations on the bar. However, since
the angle of the radial stress is difficult to quantify, an empirical method to determine
development length was used. Based on previous data, the proposed development length
equation reflects the length, cover, spacing, bar diameter, and transverse reinforcement.

, 10200d,
d= 2.5C 24
I (1+ 525 k) @4)

where dy, is the bar diameter, f’; is the compressive strength of concrete in psi, C is the lesser of
the clear cover or half the clear spacing, and Ky is as follows:

Atrfyt
= Iyt 5 25
" 600sd, — > (2.5)

where Ay is the area of transverse reinforcement, fy; is the yield strength of stirrups, and s is the
stirrup spacing. All units are in English and °¢ is in psi. This equation accounted for stress
transfer between reinforcing bars in concrete. Furthermore, Orangun et al. concluded that for the
same bar diameter, clear spacing, cover and concrete strength the values for development length
and lap splice length were interchangeable. Furthermore, the new equation required an increase
of anchorage length from 10-25% from current ACI 318-71 provisions (Orangun et al. 1977).
However, the presence of transverse reinforcement may reduce the anchorage lengths.



Darwin (Darwin 1996) tested a large array of splice and development length specimens
investigating the influence of transverse reinforcement, concrete strength, and rib area. Similar to
previous studies, Darwin found that the development length and bond forces were linear, but not
proportional. To accurately calculate bond, the number and size of transverse reinforcing bars
present over the developing length should be used. Larger relative rib areas on steel may
decrease development and splice lengths. It was also found that reducing the contribution from
concrete strength would more accurately represent bond stress. Furthermore, variability in splice
and development length design calculations implies that the code safety factors may need to be
altered. The expression formulated for the steel reinforcing bar development length incorporated
a reliability-based strength reduction factor:

f
. —3i — 1900
d_Jec (2.6)
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where the variables are defined previously. This equation is a simplification of the proposed
detailed design equation. A ¢ factor of 0.9 is incorporated as well as simplifying a cover ratio to
1.

McLean and Smith (McLean and Smith 1997) investigated non-contact lap splices in panels and
column shaft connections. Two dimensional and three dimensional models were used to predict
behavior of the specimens respectively. Experimental tests were done on near full-scale panel
specimens and on 1/4-scale column-shaft specimens under monotonic and cyclic loading. The
offset splice spacing in the panels ranged from 6-15 in. (152-381 mm). Three preliminary
specimens did not have transverse reinforcement. A discrepancy in the relation of bond stresses
and non-contact lap splices arose from using either an effective lap length or an overall lap
length. The proposed overall splice length is composed of the effective length plus the length
added from the bar spacing and crack angle. All the preliminary specimens without transverse
reinforcement failed as a result of tension cracking of the concrete perpendicular to the spliced
bars. The failure loads were only 40-60% of the bar yielding force. The greater the offset
spacing, the greater the amount and extent of cracking occurred in the tests. A strut and tie
methodology could be used for design: the transverse reinforcement acts as a tie and the concrete
compression strut acts between diagonal cracks between bars. After testing, McLean and Smith
recommended longer embedment length and less conservative splice length if splicing two
different bars.

Darwin (Darwin 2005) surveyed current design provisions and compared experimental data to
calculated results. Because of high variability in bond stress, Darwin suggested that an adequate
splice length be recommended instead of a maximum bond stress. Furthermore, yielding of the
steel reinforcing bar did not significantly affect bond strength. Darwin confirmed bond strength
is a function of several factors: the development length, the side and bottom cover, spacing of the
reinforcing bar, transverse reinforcement, the top bar factor, the bar surface condition, and the
concrete strength. Development and splice length were compared in the following codes:
AASHTO, ACI 318, ACI Committee 408, CEB-FIB Model Code 1990, and Eurocode 2. Of
those codes, Darwin found that ACI 408 provided the best match with test results for both



developed and spliced bars. The ACI 408 equation for development length was derived from
work by Zuo and Darwin (Zuo and Darwin 1998) as:

(lf—ly/4 - 48(») afi
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d, (2.7)

where c=Cpin+0.5dp, ©=0.1(Cmax/Cmin)+0.9<1.25, Cmax and Cmin are the maximum and minimum of
Cp (the bottom cover) and c; (the side cover). a, 3, and 1 are terms for excess reinforcement.

Triska (2010) constructed and tested four full scale vintage T beam specimens. The specimens
reflected previous work simulating vintage RCDG details performed by Higgins et al. (2004).
The typical specimen was 26 ft (7.92 m) long, with a 14 x 42 in. (356 x 1067 mm) web, and a 6 X
36 in. (152 x 914 mm) deck. Vintage concrete mixtures with strengths around 3300 psi (22.75
MPa) were used. Lower-strength shear reinforcing bars were used to simulate in-situ bridge
strength. The specimens had three or four #11 (36M) bars with a built-in anchorage deficiency.
Two flexural steel reinforcing bars were terminated one-third of the specified development
length past a preformed diagonal crack to simulate an anchorage deficiency. The angle of the
preformed diagonal crack varied from 0, 45, and 60 degrees. Reinforcing bar strain and cutoff
bar slip was monitored to verify the design and analysis. All specimens failed in shear-tension
due to anchorage slip of the cutoff bar. Stirrups confined the cutoff bar and created a ductile
slipping anchorage failure. The average cutoff bar bond stress was 851 psi (5.87 MPa). Average
bond stress for the anchored bars was 284 psi (1.96 MPa). All bond stress values were measured
from the intersection of the preformed crack to the end of the cutoff bar. Triska determined that
the AASHTO LRFD specifications for tensile demand are adequate at failure. The preformed
diagonal crack did not dictate the failure crack and may not significantly weaken the structure at
service loads. Lastly, chevron cracks were found to propagate along the cutoff bar close to
failure.

Similarly, Goodall (Goodall 2010) investigated the influence of diagonal cracks on the flexural
anchorage performance in negative moment regions of full-size RCDG specimens. Similar to
previous specimens constructed by Higgins et al. (Higgins et al. 2004), the specimens were 26 ft
(7.92 m) long with a 14 x 42 in. (356 x 1067 mm) web, and a 6 x 36 in. (152 x 914 mm) deck.
Goodall tested four RCDG IT-beam specimens containing diagonal cracks that interacted with
the cutoffs of flexural steel reinforcing bars. Specimens were designed to replicate vintage
RCDG members. To do this, concrete mixtures were used with target strengths of 3300 psi (22.8
MPa) and Grade 40 (Grade 280) stirrups were used. The specimens were constructed with a
preformed diagonal crack at an angle of 45° or 60° to prevent aggregate interlock and had either
five or six Grade 60 (Grade 420) flexural reinforcing bars. The specimens were constructed with
bars cutoff before they were fully developed. The cutoff bars extended approximately one-half of
the minimum development length, determined by ACI 318-08, past where they intersected with
the preformed crack. The tests had bond stresses in the developed bars that exceeded the amount
predicted by current specifications, therefore a more accurate estimate of bond stress is
necessary. Specimen behavior at failure was found to be independent of the initial diagonal
preformed crack.



Various bond stresses reported in the literature are shown in Table 2.1.

Figure 2.3: Summary of bond stress in steel reinforcing bars from literature.

Average
Bar Bar Test Bond
Author Bar Type | Diameter | Embedment Type Stress
(in) [mm] | (in) [mm] (psi)
[MPa]
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0.875 21 770
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(WD) g | 0875 78 soam | 540815
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141 Fully 284
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Triska [35.8] Anchored [1.96]
(2010) 1.41 851
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2.2.2 Near-surface Mounting Technique

The near-surface mounting technique (NSM )of retrofitting has emerged as a potential solution
for strengthening infrastructure in the past three decades. A literature review was conducted to
briefly identify trends in testing, analysis, and design. The purpose, testing methodology, and
conclusions are summarized. Specific data are listed if the literature included relevant bond stress
or load deformation responses. The development of code specifications can be seen in the
gradual presentation of analytical methods. Articles commonly focused on carbon-fiber
reinforced polymer (CFRP) reinforcement and short bond lengths.

Rizkalla et al. (Rizkalla et al. 2003) wrote an overview of the history, properties, and use of FRP
in strengthening concrete structures. FRP emerged in the mid-1950s but did not become a
commercially recognized material until the late 1970s. Mechanical properties are dependent on
the resin modulus, failure strain in the fiber, and the bond between the resin and fiber. Currently,
ASTM D3039-08 (ASTM 2008) is used for tensile testing of polymer matrix composite



materials. In many cases, serviceability criteria, fatigue, and creep rupture endurance limits may
control the design because of its linear elastic behavior and tendency for sudden failures.
Specifically, near-surface mounted FRP systems can strengthen regions where external
reinforcement would be subject to damage. In addition, the NSM rods have shown a greater
anchoring capacity compared to the surface bonded FRP. Failure modes of NSM strips include
epoxy split failure (can be avoided with increasing epoxy thickness), or concrete split failure
where the tensile strength of the epoxy exceeds the concrete (widening the groove can minimize
the induced tensile stresses).

DeLorenzis et al. (DeLorenzis et al. 2000) discussed the advantages and bond strength of NSM
FRP strengthening in concrete. Direct pull-out and a beam pull-out tests were used to measure
bond stress in the FRP material. The experimental variables included the bonded length,
diameter of rod, type of material (glass fiber reinforced polymer (GRFP) or CFRP), surface
configuration, and size of groove. In general, deformed CFRP bars appeared to be more efficient
and achieved higher bond strengths. Furthermore, increasing the groove size led to higher bond
strength and decreased the failure by splitting of the epoxy cover. Ultimate load increased with
an increased embedded length; however, the average bond strength was decreased as the bonded
length increased, similar to reinforcing bar concrete bond stress behavior. A #4 (13M) CFRP bar
embedded 6 in. (152.4 mm) had an average bond strength of 1078 psi (7.43 MPa). With a 12 in.
(304.8 mm) embedment, the #4 (13M) CFRP bar had an average bond strength of 620 psi (4.27
MPa). Several large scale T-specimens were cast and retrofit with FRP. The specimens had two
# 7 (22M) bars as flexural reinforcement and were tested with four point bending. The NSM
retrofit consisted of two #4 (13M) CFRP bars and increased the capacity of the baseline
specimen by 44.3%. The baseline specimen had a capacity of 35.2 kips (157 kN) with a
deflection of approximately 1.6 in. (40.6 mm). The strengthened specimen had a capacity of
50.79 kips (226 kN) with a deflection of approximately 1.1 in. (27.9 mm). The retrofitted beam
had a much stiffer load displacement response and decreased the ductility from the control
specimen.

After prior studies, DeLorenzis and Nanni (DeLorenzis and Nanni 2001) discussed a design
procedure for flexural and shear strengthening of reinforced concrete beams with NSM FRP
reinforcement. The proposed design procedure for flexure consisted of obtaining the local bond
strength of NSM bars from literature or bond tests, u;, computing the minimum stabilized crack
spacing, lmin, cOmputing the delamination stress, ogeimax, COMputing the nominal ultimate moment
using conventional reinforced concrete theory, and finally computing the design ultimate
moment by applying reduction factors. A critical component in this design is the delamination
stress where oyqe IS equal to:

2bL,1

Ofdel SnmdZn | (2.8)
where b is the width of the beam, L, is the effective length of the NSM bars in the shear span, | is
the crack spacing, n is the number of NSM bars, d, is the bar diameter, h’ is the distance from the
top of the section to the centroid of NSM, and f is the concrete tensile strength. This equation
would govern the available tensile stress for strengthening. However, this equation was not
incorporated into the code, and a different empirical equation for delamination strain was used.
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De Lorenzis also proposed a development length equation calculated based on minimum crack
distances in the concrete, Ini,. The minimum crack distance is based on the area of concrete in
tension, the concrete tensile strength, and bond strength between the concrete-reinforcing bar
interface and the NSM bar-epoxy interface. This method is similar to techniques described by
McLean and Smith (McLean and Smith 1997) for bars in concrete but was not adopted into the
ACI 440 specifications.

De Lorenzis (DeLorenzis 2002) investigated modified pull-out or bond tests for NSM FRP rods.
Failure modes of the pull-out tests are often governed by the distance from the concrete edge and
the short bonded length. Since these behaviors may not occur in full-scale specimens, a modified
approach was necessary. The test specimens were “C” shaped concrete blocks with a pre-formed
groove for the FRP. The variables tested were the groove filling material, groove size, and rod
surface (sandblasted, spirally wound, and ribbed). The epoxy-concrete was the critical interface.
A #4 (13M) spirally wound CFRP bar embedded in epoxy a length of four times the bar diameter
had an average bond strength of 1637 psi (11.29 MPa). The average bond strength at the epoxy-
concrete interface 7,1, Was expressed as:

P
Taviu = 3:{“1;; (2.9)
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where Pmay is the ultimate load, dg is the groove size, and Iy, is the bonded length. De Lorenzis
used Equation (2.9), obtained peak stresses, and used a Bertero-Popov-Eligehausen (BPE)
relationship to fit the experimental data. From this, De Lorenzis determined a generalized bond
stress relationship between concrete-epoxy and epoxy-bar interfaces. However, this method must
be calibrated using experimental results before being used to develop the required embedment
length. Other conclusions recommended saw cutting of grooves, and observing that the average
bond stress decreases as the groove size and embedment length increases.

Hassan (Hassan 2003) conducted an experimental study of the bond of NSM FRP strips. Small
scale T-specimens were constructed and designed to fail in flexure. Each beam was strengthened
with one 0.05 x 1.97 in. (1.2 x 50 mm) strip of CFRP that extended varying lengths from 5.9 in.
to 47.2 in. (150 mm to 1,200 mm) on each side of midspan. The specimens were tested with 3
point loading. A significant strength increase was associated with embedment lengths over 5.9
in. (150 mm). However, debonding was prevalent until the embedment lengths reached 33.5 in.
(850mm). This indicated the full composite action was not developed due to anchorage concerns.
The control specimen had a capacity of 11.7 kip (52 kN) and a deflection of approximately 2.56
in. (65 mm). The shortest fully composite beam used a 33.5 in. (850 mm) development length
and reached a load of 17.6 kip (79 kN) with approximately 1.1 in. (28 mm) of deflection. The
NSM retrofit response was much stiffer and increased the baseline capacity by 52% but
decreased the deformation capacity by 57%. Furthermore, Hassan found that the load required to
debond the NSM FRM material generally increased with embedment length, concrete strength,
and groove width. Lastly, greater internal reinforcing steel ratios increased 